Skip to main content

Industry & alumni

Pacific Northwest National Laboratory (PNNL)

Through-Ice Energy Harvester Deployment Mechanism

Generating electrical power from currents and waves may enable ocean sensing in energy-constrained environments like high latitudes where other renewable sources like solar may not be practical or viable. One area of interest is powering sensors fixed to sea ice, which is critical for understanding the warming arctic. To power such sensors, devices are being investigated that can harvest the energy from the relative motion between floating sea ice and water, such as small turbines or vortex-induced-vibration elements. A key design challenge for these devices is how the harvesting system accesses the ice/water interface underneath the sea ice and secures itself there, particularly on ice too hazardous to safely support access by personnel. The student team worked to develop conceptual solutions and a prototype design of an automated deployment and securement mechanism for a current energy harvester below the ice that can position and secure an energy harvesting system under floating sea ice from a starting position at the ice surface and facilitate electrical connectivity from the harvester to sensors at the ice surface. The system is equipped with enough energy to complete its task and self-deploy with no additional human intervention and is expected to survive through a full season of ice breakup and melting.

Faculty Adviser

Eli Patten, ME Capstone Director, Mechanical Engineering

Students

Bailey Deck
Cole Nichols
Garrett Larson
Griffey Sarmiento
Yoeur-Man Teagan Mach

Related News

Close-up of utility poles with mounted electronic devices and cables in an outdoor setting

Fri, 09/20/2024 | UW Civil & Environmental Engineering

Smarter irrigation for a greener UW

A new project combines satellite data with ground sensors to conserve water and create a more sustainable campus environment.

One person is sitting in a hammock chair, while another person holds part of the frame structure

Mon, 09/09/2024 | UW Mechanical Engineering

Testing an in-home mobility system

Through innovative capstone projects, engineering students worked with community members on an adaptable mobility system.

Five ShockSafe team members stand next to their poster and their prototype of their device

Mon, 08/19/2024 | UW Mechanical Engineering

Students strive to ensure accurate AED shock dosage

ShockSafe, developed by students with the help of mentors from Philips and Engineering Innovation in Health (EIH), can distinguish between children and adults during cardiac arrest emergencies.

ISE Senior Capstone class

Wed, 08/07/2024 | Snohomish County News

Snohomish County, University of Washington partnership boosts efficiency in enterprise scanning center

UW Industrial and Systems Engineering Capstone Project set to save Snohomish County over $40,000 annually.