
• ML algorithms identify and improve circumstances of inaccuracy in the physics-based range 
estimation, significantly enhancing accuracy adapting in real-time to data variations.

• ML Models Used:
1. XGBoost (boosting algorithm), 
2. SARIMA (statistical model)
3. Transformers (advanced deep learning architectures).
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This project requires a Range Estimation tool for 
PACCAR's Battery Electric Vehicles (BEVs) that can 
accurately estimate range while accounting for 
variability of real-world driving factors in addition to the 
battery being the sole source of power for all BEV 
components. This tool would reduce range anxiety 
among truck drivers by providing an accurate range 
estimation tool for PACCAR BEVs. 

Problem Statement

Vehicle dynamics were used to 
develop a physics-based equation for 
range estimation. Utilizing previous 
capstone work and PACCAR drive 
cycle data as a baseline, the model 
has been integrated with machine 
learning (ML) algorithms to further 
compensate for discrepancies 
between model predictions and 
ground-truth data.

Approach

Future Work, References, and Acknowledgments

Physics-Based Model

• The physics model utilizes the road-
load equation as described in [1], 
which quantifies all the forces that 
effect a vehicle during operation.

• BEV Power Consumption and 
Energy is calculated by:

Machine Learning Approach

• Utilize Google Maps data to generate drive 
cycles/consumption predictions between any 
two destinations.

• Perform live power consumption predictions 
with our model/GUI hosted on the cloud.

[1] C. Fiori, K. Ahn, and H. A. Rakha, "Power-based electric 
vehicle energy consumption model: Model development 
and validation," Applied Energy, vol. 168, pp. 257-268, 
2016. doi: 10.1016/j.apenergy.2016.01.097
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Amisha Somaiya. Their guidance and mentorship in this 
project made it into what it is today. 

Figure 3: Forces and Parameters That Effect Power 
Consumption

Figure 5: Time-Series Decomposition
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Figure 4: Model Prediction Comparison

Figure 2: Flowchart of Approach

Figure 1: PACCAR BEV Truck

Model Inputs: 
Velocity, Altitude 

Output:
Power Consumption (see Fig. 4)

GUI Interface

• Hosted in web browser, developed 
using HTML, CSS, JavaScript, and 
D3.js (dynamic visualization).

• There is no end-user model 
calculations, references 
preprocessed data from the 
model. 

• Starting time, SOC, and other 
parameters can be selected by the 
user.

• Highlights the region of the drive 
cycle that can be completed given 
these parameters.

• Also displays final SOC, average 
energy consumption, and distance 
remaining in the route.
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Time (s)

Table 1: RMSE Values and Training Time of Several Approaches

• RMSE values were used as metrics to determine which model provides the most 
accurate range estimation.

• Multiple models were developed based on maximizing efficiency, computational 
power, and accuracy.

• ML has halved the RMSE of the initial physics-based model, a substantial increase in 
prediction accuracy.

• Hybrid model provides accurate range estimations for electric trucks, significantly 
benefiting PACCAR by enhancing the reliability and efficiency of their electric fleet.

Winner: XGBoost Hybrid |Top Accuracy: 90.4 | Least Computation: <1s 

Conclusion

Figure 7:  Range Estimator Web Application
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Figure 6: Hybrid Model Decision Flowchart


