Novo Nordisk
Application for Early Alzheimer's Disease Diagnosis
Detecting the onset of early-stage Alzheimer’s Disease, along with monitoring the progression of the disease, is well-known to be difficult and, often-times, unreliable. Simply put, there has yet to be a clinically validated tool or methodology for determining the biomarkers that indicate the presence and progression of Alzheimer’s disease. This student team worked to develop a digital tool that can integrate inputs from well-established, in-home, and wearable devices as data which, through an AI and ML programmatic approach, aims to synthesize that data, providing a reading which can indicate both the presence of Alzheimer’s Disease and the degree of change of that disease over time. Two key factors which are baseline and that the student team worked to incorporate into the tool were inputs which capture the patient's gate (wearable) and sleep patterns (wearable and/or smartphone). The student team sought to include other data inputs incrementally as project timing/cost/complexity allows. These included some or all of the following: speech patterns, eye tracking, reading tracking, device patterns (typing and gestures), home movement patterns. The essential concept here is that more inputs equal more data to integrate and provide a more focused and complete picture of the patient's condition. Outcomes this student team worked toward include: • Working prototype, end-user platform/tool • Solution accessible from tablet or smartphone • Name and branding for tool • Mapping and progressive design outputs (e.g. journey map, app map, flowchart, thumbnails, design comps, etc.) • Software which displays the appropriately modified information and diagnostic recommendations (personalized to their capability/level of ability) in a usable (accessible - UX standards) visual format (easy to use dashboard and navigation). • Demonstrated successful real world use/testing - patients can easily access the application with the follow-on understanding of the appropriate information/course of action through the interface
Faculty Adviser
Payman Arabshahi,
Associate Professor, UW ECE,
Electrical & Computer Engineering
Students
Aakash Neve
Bole Yi
Eugene Ngo
Francisco Luquin Monroy
Linh Truong
Lucas Ze Xia Wang
Nathanael Judah Hartanto
Sabrina Hwang
Related News
Fri, 09/20/2024 | UW Civil & Environmental Engineering
Smarter irrigation for a greener UW
A new project combines satellite data with ground sensors to conserve water and create a more sustainable campus environment.
Mon, 09/09/2024 | UW Mechanical Engineering
Testing an in-home mobility system
Through innovative capstone projects, engineering students worked with community members on an adaptable mobility system.
Mon, 08/19/2024 | UW Mechanical Engineering
Students strive to ensure accurate AED shock dosage
ShockSafe, developed by students with the help of mentors from Philips and Engineering Innovation in Health (EIH), can distinguish between children and adults during cardiac arrest emergencies.
Wed, 08/07/2024 | Snohomish County News
Snohomish County, University of Washington partnership boosts efficiency in enterprise scanning center
UW Industrial and Systems Engineering Capstone Project set to save Snohomish County over $40,000 annually.