Buddy Ratner
Michael L. and Myrna Darland Endowed Chair in Technology Commercialization
College of Engineering
Professor
Chemical Engineering
Professor
Bioengineering
Adjunct Professor
Materials Science & Engineering
- ratner@uw.edu
- (206) 685-1005
- BIOE N330J
Biography
Today’s biomaterials and medical devices save lives and improve the quality of life for millions. These are part of a $300 billion industry. However, there are also complications that stem from these devices, often associated with non-physiologic (fibrotic) healing, initiation of inflammation, thrombosis and/or bacterials colonization. The University of Washington Engineered Biomaterials (UWEB) program (an NSF Engineering Research Center) asks if healing and performance of implanted biomaterials might be engineered to be similar to the healing of normal wounds? To do this, we study the basic biology of wound healing in collaboration with colleagues who are expert in these areas. Then, we, as engineers, translate the basic science discoveries into technologies appropriate to improve the performance of medical devices.
We engineer new biomaterial surfaces using a wide range of technologies. For example, radio-frequency plasma deposition (a method borrowed from microelectronics) can readily place interesting thin films on existing medical device surfaces. These films can be used in the precision immobilization of key signaling molecules. We also synthesize new polymers that can be biostable, environmentally responsive, biodegradable and/or porous (i.e., scaffolds). The new surfaces and materials made in our laboratory are studied in contact with proteins, blood, living cells and tissues (in vivo and in vitro).
Recently, there has been considerable interest in tissue engineering in my laboratory. Tissue engineering exploits all the above principles in the context of tissue and organ reconstruction and regeneration. Specific tissue engineering projects in the Ratner lab have aimed toward heart muscle, esophagus, bone, cartilage, bladder, vagina and cornea. Another new project seeks to model cancer tumor microenvironments using tissue engineering ideas.
- Biomaterials/biocompatibility projects ongoing in my laboratory include:
- drug delivery devices
- porous scaffolds
- tissue engineering
- angiogenesis
- healing in soft tissue
- bioelectrode performance
- bioattachment
- biorecognition
- polyurethanes
- hydrogels
- biodegradable polymers
- non-fouling surfaces
- blood-contacting materials
- bacterial biofilms/infection
Biomaterial surfaces are the only part of a biomaterial or medical device that is seen by the body. Surfaces present unique analytical problems because of the small mass of material involved (a billionth of a gram of matter per square centimeter is typical). Special instruments are required to study surfaces, and we adapt methods developed in the physics and microelectronics communities to problems in biology and medicine. We use electron spectroscopy for chemical analysis (ESCA), secondary ion mass spectrometry (SIMS), infrared spectroscopy, scanning probe microscopies, surface plasmon resonance and sum frequency generation to observe surface structure and biological interactions.
In 2016, we launched the Center for Kidney Dialysis (CDI). CDI aims to address many of problems in kidney dialysis that shorten the lives of patients including blood compatibility, fibrosis, restenosis, bacterial infection, membrane limitations, etc. I serve as co-director of CDI along with Professor Jonathan Himmelfarb (MD nephrologist).
Education
- PhD, Polymer Chemistry, Polytechnic Institute of Brooklyn, 1972
- BS, Chemistry, Brooklyn College, 1967
Previous appointments
- Postdoctoral Fellow, Dept of Chemical Engineering, University of Washington, 1972-1973
Select publications
- “A Pore Way to Heal and Regenerate: 21st Century Thinking on Biocompatibility” B. D. Ratner, Regenerative Biomaterials, 2016, doi: 10.1093/rb/rbw006 (invited, refereed perspective article)
- “Blood Compatibility Assessment of Polymers used in Drug Eluting Stent Coatings,” Luisa Mayorga Szott, Colleen A. Irvin, Mikael Trollsas, Syed Hossainy, Buddy D. Ratner, Biointerphases, 11. 029806, 2016
- “Drug Encapsulated Aerosolized Microspheres as a Biodegradable, Intelligent Glioma Therapy” (authors: J. A. Floyd, B.D. Ratner, Journal of Biomedical Materials Research A, 104A, 544–552, 2016
- “Drug Encapsulated Polymeric Microspheres for Intracranial Tumor Therapy: A Review of the Literature” J. A. Floyd, A. Galperin, B. D. Ratner, Advanced Drug Delivery Reviews, 91, 23–37 2015
- “Healing with medical implants: The body battles back,” B. D. Ratner, Sci. Transl. Med. 7, 272fs4, 2015.
- “Revealing cytokine-induced changes in the extracellular matrix with secondary ion mass spectrometry,” A. J. Taylor, B. D. Ratner, L.D.K. Buttery, M. R. Alexander, Acta Biomaterialia, 14:70-83, 2014.
- “A tough, precision-porous hydrogel scaffold: Ophthalmologic applications,” W.Q. Teng, T. Long, T. Shen, B. Ratner, Biomaterials, 35(32): 8916-8926, 2014.
- “Prostate cancer xenografts engineered from 3D precision-porous poly(2-hydroxyethyl methacrylate) hydrogels as models for tumorigenesis and dormancy escape,” T.J. Long, C.C. Sprenger, S.R. Plymate, B.D. Ratner, Biomaterials, 35(28):8164-74, 2014. PMID: 24942815
- “Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction,” E.M. Sussman, M.C. Halpin, J. Muster, R.T. Moon, B.D. Ratner, Annals of Biomedical Engineering, 42(7):1508-16, 2014. PMID: 24248559
- “Digital Drug Delivery: On-Off Ultrasound Controlled Antibiotic Release from Coated Matrices with Negligible Background Leaching,” M.L. Noble, P.D. Mourad, B.D. Ratner, Biomater. Sci., 2(6):893-902, 2014.
- “Engineered Biomaterials Control Differentiation and Proliferation of Human-Embryonic-Stem-Cell-Derived Cardiomyocytes via Timed Notch Activation,” J.C. Tung, S.L. Paige, B.D. Ratner, C.E. Murry, C.M. Giachelli, Stem Cell Reports, 2(3):271-81, 2014. PMID: 24672751 PMCID: PMC3964284
- “Going out on a limb about regrowing an arm,” B.D. Ratner, J. Materials Sci: Materials in Medicine, 24(11):2645-9, 2013. PMID: 24132739
- “Zwitterionic hydrogels implanted in mice resist the foreign-body reaction,” L. Zhang, Z. Cao, T. Bai, L. Carr, J-R Ella-Menye, C. Irvin, B.D. Ratner, S. Jiang, Nature Biotechnology, 31(6):553-6, 2013. PMID: 23666011
- “Prevascularized Microtemplated Fibrin Scaffolds for Cardiac Tissue Engineering Applications,” K.S, Thomson, F.S. Korte, C.M. Giachelli, B.D. Ratner, M. Regnier, M. Sctena, Tissue Engineering Part A, 19(7-8):967-77, 2013. PMID: 23317311 PMCID: PMC3589898
- “Capillary Force Seeding of Sphere-Templated Hydrogels for Tissue-Engineered Prostate Cancer Xenografts,” T.J. Long, M. Takeno, C.C. Sprenger, S.R. Plymate, B.D. Ratner, Tissue Eng Part C Methods, 19(9):738-44, 2013. PMID:23373788
- “Synthesis and Fabrication of a Degradable Poly(N-isopropyl acrylamide) Scaffold for Tissue Engineering Applications,” A. Galperin, T.J. Long, S. Garty, B.D. Ratner, J. Biomed. Mater. Res. A, 101(3):775-86, 2013. PMID: 22961921 PMCID: PMC3712632
- “Integrated Bi-Layered Scaffold for Osteochondral Tissue Engineering,” A. Galperin, R.A. Oldinski, S.J. Florczyk, J.D. Bryers, Miqin Zhang, B.D. Ratner, Advanced Healthcare Materials, 2(6):872-83, 2012. PMID:23225568 PMCID: PMC3644393
- “The effect of octadecyl chain immobilization on the hemocompatibility of poly (2-hydroxyethyl methacrylate),” M. Fischer, C.P. Baptista, I.C. Gonçalves, B.D. Ratner, C. Sperling, C. Werner, M.C.L. Martins, M.A. Barbosa, Biomaterials, 33(31):7677-85, 2012. PMID: 22840226
- “Engineering biomaterials to integrate and heal: The biocompatibility paradigm shifts,” J.D. Bryers, C.M. Giachelli, B.D. Ratner, Biotechnology and Bioengineering, 109(8):1898-911, 2012. PMID: 22592568 PMCID: PMC3490630
- “Macrophage Polarization: An Opportunity for Improved Outcomes in Biomaterials and Regenerative Medicine, B.N. Brown, B.D. Ratner, S.B. Goodman, S. Amar, S.F. Badylak, Biomaterials, 33(15):3792-802, 2012. PMID: 22386919 PMCID: PMC3727238
- “Cutaneous and inflammatory response to long-term percutaneous implants of sphere-templated porous/solid poly(HEMA)and silicone in mice,” P. Fleckman, M. Usui, G.A. Zhao, R. Underwood, M. Maginness, A. Marshall, C. Glaister, B. Ratner, J. Olerud, J.Biomed. Mater. Res.A, 100(5):1256-68, 2012. PMID: 22359383 PMCID: PMC3506026
- “Amphiphilic Self-assembled ‘Polymeric Drugs.’ Morphology, Properties and Biological Behaviour of Nanoparticles,” M.L. Lopez-Donaire, E. Sussman, M. Fernandez-Gutierrez, A. Mendez-Vilas, B. D. Ratner, B. Vazquez-Lasa, J. San Ramon, Biomacromolecules, 13(3):624-35, 2012. PMID: 22339281
- “Plasma Pencil Atmospheric Mass Spectrometry Detection of Positive Ions from Micronutrients Emitted from Surfaces,” M.J. Stein, E. Lo, D.G. Castner, B.D.Ratner, Analytical Chemistry, 84(3):1572-8, 2012. PMID: 22243439 PMCID: PMC3282486
- “Identifying Individual Cell Types in Heterogeneous Cultures Using Secondary Ion Mass Spectrometry Imaging with C60 Etching and Multivariate Analysis,” C.A. Barnes, J. Brison, M. Robinson, D.J. Graham, D.G. Castner, B.D. Ratner, Analytical Chemistry, 84(2):893-900, 2012. PMID: 22098081 PMCID: PMC3264684
- “Quantifying the effect of pore size and surface treatment on epidermal incorporation into percutaneously implanted sphere-templated porous biomaterials in mice,” R.A, Underwood, M.L. Usui, G. Zhao, K.D. Hauch, M.M. Takeno, B.D. Ratner, A.J. Marshall, X. Shi, J.E. Olerud, P. Fleckman, J. Biomed. Mater. Res. A, 98(4):499-508, 2011. PMID: 21681942
- “The Biocompatibility Manifesto: Biocompatibility for the Twenty-first Century,” B.D. Ratner, J. Cardiovasc. Transl. Res., 4(5):523-7, 2011. PMID: 21710333
Honors & awards
- 2016 Kammermeyer Lecturer, University of Iowa
- 2015 Distinguished Service Award, ACS Division of Polymer Chemistry
- 2015 Langmuir Lecture, American Chemical Society (COLL Division)
- 2015 Most Cited Paper Award, Annals of Biomedical Engineering
- 2014 University of Washington School of Medicine 2014 Lifetime Innovator and Inventor Award
- 2011-2012 AVS Biointerphases Lectureship
- 2012 George Winter Award, European Society for Biomaterials
- 2012 Honorary Professor of Sichuan University
- 2012 Journal of Materials Science-Materials in Medicine “Best Paper Published in 2011”
- 2011 Pierre Galletti Award of the American Institute of Medical & Biological Engineering
- 2010 McGowan Distinguished Lecturer, University of Pittsburgh
- 2010 Annual Faculty Lecturer, University of Washington
- 2009 Chandra P. Sharma Award, Society for Biomaterials & Artificial Organs (India)
- 2009 Acta Biomaterialia Gold Medal Award
- 2008 BMES Pritzker Distinguished Lecturer Award
- 2008 J. Edward Berk Lecture Medal
- 2008 Listed in AIChE’s “One Hundred Chemical Engineers of the Modern Era”
- 2008 Frontiers of Science Award, Society of Cosmetic Chemists
- 2008 Kewaunee Lecturer, Duke University
- 2007 Bayer Lectureship, University of Akron
- 2006 C. William Hall Award, Society for Biomaterials
- 2004 Founders Award, Society for Biomaterials
- 2004 Distinguished Lecturer, University of Utah
- 2002 Medard W. Welch Award, American Vacuum Society
- 2002 Chair, Roundtable on Biomedical Engineering Materials and Applications (BEMA)
- 2000 Science In Medicine Lecturer, University of Washington
- 2000 Joe Smith Distinguished Lecturer, University of California, Davis
- 2004-2005 Robert F. Rushmer Professor of Bioengineering, University of Washington
- 2001-2004 Washington Research Foundation Endowed Professor of Bioengineering
- 1999 American Vacuum Society Distinguished Lecturer
- 1998 C.M.A. Stine Award for Materials Science, AIChE
- 1996 Van Ness Lecturer, Rensselear Polytechnic Institute
- 1995 Chair, Gordon Research Conference on Biocompatibility & Biomaterials
- 1991 Perkin Elmer Physical Electronics Award for Excellence in Surface Science
- 1990 Burlington Resources Foundation Faculty Achievement Award for Outstanding Research
- 1988 Clemson Award for Contributions to the Literature
- 2014 Fellow, Polymer Division of American Chemical Society
- 2011 Fellow, American Chemical Society
- 2010-2012 UW Entrepreneurial Faculty Fellow
- 2012 Fellow, Tissue Engineering and Regenerative Medicine International Society (FTERM)
- 2011 Fellow, American Chemical Society
- 1993 Founding Fellow of the American Institute of Medical and Biological Engineering (AIMBE)
- 1993 Fellow, American Vacuum Society
- 1993 Fellow, Society for Biomaterials
- 2002 Elected to the National Academy of Engineering of the United States of America